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SYNOPSIS 

The plane strain shear yield stress and the triaxial crazing stress were determined for 
several commercial glassy polymers as a function of temperature. The polymers considered 
were: polycarbonate (Lexan") , polysulfone (Udel") , polyetherimide (Ultem") , polyarylate 
( Arylon"), and an amorphous nylon ( Zytel" 330). When normalized to TB the data for the 
various polymers were similar but not identical. An exception may be the triaxial crazing 
strains. In the temperature region between [ T - TB] = -300" and -50°C the crazing strains 
were all small ( <1.5% ) , showed little temperature dependence, and appeared identical 
within the precision of our measurements. For temperatures below TB and above any major 
secondary relaxation, Poisson's ratio was found to be constant for all of the polymers 
examined, 0.42 (+5%). 0 1993 John Wiley & Sons. Inc. 

INTRODUCTION 

In many early polymer applications the dimensions 
and shapes of the parts were such that the primary 
mode of response was shear deformation (i.e., shape 
change) and the useful characterization parameter 
was the shear yield stress. Plastics were usually con- 
sidered "tough" since they underwent extensive de- 
formation before breaking. In more recent structural 
applications such as composites, because of size and 
construction geometries, polymers are sometimes 
subjected to triaxial states of stress. From an engi- 
neering point of view, this has led to the increasing 
application of fracture mechanics concepts to poly- 
mer solids.' From a mechanistic viewpoint, the 
triaxial forces tending to increase the volume of 
polymer usually lead to a special type of cavitation- 
crazing. The crazing stress (or strain) is thus an 
important characterization parameter for polymers 
and must be added to the yield stress to describe 
mechanical failure. The consideration of crazing is 
not new.2 In fact, the molecular understanding of 
crazing probably surpasses our detailed knowledge 
of ~ ie ld ing .~  The growing structural applications of 
polymers merely highlights the addition of crazing 
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parameters in engineering failure computations and 
predictions. 

EXPERIMENTS AND RESULTS 

The literature4 yields a rather limited number of 
techniques that have been used to determine the 
yield stress of polymer materials and an even smaller 
number of experiments to determine the crazing 
stress. The use of tensile experiments to measure 
the yield stress is the most common. It suffers from 
two problems: a new tensile bar must be used for 
each determinations; and the stress-strain curves 
frequently do not show an easily recognizable "knee" 
or maximum and one is forced to use a more arbi- 
trary definition of yield (i.e., 0.2% strain off-set). 
Walrath and Adams5 used the Iosipescue shear test 
method to measure yield stresses in polymers and 
composite samples. With neat polymers, we found 
that this measurement frequently did not exhibit an 
easily recognizable knee and each sample required 
a bonded strain gauge thus complicating the multiple 
determination problem. The classical shear exper- 
iment involves the twisting of a cylindrical  ample.^ 
We did not consider these measurements since cy- 
lindrical samples are not easily available to us. The 
technique adopted for this work was a compression 
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or indentation test.6 We found that there was some 
ambiguity in the analysis of the results but the sim- 
plicity of the test, its reproducibility, and its con- 
sistency with tensile experiments led us to adopt it 
for this study. 

The literature yields three techniques to measure 
the crazing stresses in polymers. Gent imbedded 
spherical inclusions in elastomer samples and care- 
fully noted the far field stresses on the sample when 
voids were formed near the inclusions. The traction 
on the sample at the point of cavitation could then 
be computed. Sample preparation is an obvious 
problem if this technique were used as a general 
characterization method. Probably the most highly 
developed and precise method is that used by Kra- 
mer and Berger3 and others.' They statistically de- 
termine the crazing strains and use tensile moduli 
to calculate the crazing stresses. The technique uses 
thin film samples, deposited from solution, and thus 
their measurements are usually done under plane 
stress conditions. We wanted information obtained 
under plane strain conditions. Information on hand 
indicates that the crazing stresses are the same under 
both conditions of stressg so this may not be a prob- 
lem. A possible drawback to the general utility of 
this technique lies in the equivalence of the solution 
deposited sample and the bulk materials actually 
used in the various applications. This could be cir- 
cumvented by the elliptical bending technique used 
by Kambour lo to determine the crazing strain but 
the general application of this technique to all glassy 
polymers is difficult. Many will yield and not craze. 
The third experimental technique involves the 
breaking of specimens with blunt notches and a de- 
termination of the position of the crazes with respect 
to the notch. One then makes use of the slip line 
theory developed by Hill l1 to obtain a relationship 
between the shear yield and crazing stress. This 
methodology has been used with success by Ishikawa 
and Narizawa" to examine the effects of aging in 
glassy polymers and was adopted for this study. 

Table I Sample Identification 

Sample Source Tgl 

Polyarylate Arylon" 178 
172 

Polysulfone UdeP 176 
Polyetherimide Ultem" 201 
Polycarbonate Lexan" ... 
Amorphous nylon Zytelm 330 129 

Tg2 Density 

... . . .  
170 1.209 
175 1.233 
201 1.282 
139 1.199 
134 1.159 

T61, DSC determination; T62, volume/temperature determi- 
nation. Density, gm/cc (helium pycnometer). 

LOAD 

FOOT 
'length' 

\ SAMPLE 

Figure 1 Schematic of compression apparatus. 

Test Samples 

Samples were collected in the form of +-in.-wide flex 
bars. Where possible, bars with 4 and in. thick- 
nesses were also obtained. After notching, all ma- 
terials were heated to 5-10°C above their Tg for at 
least 4 h in an oven and the oven turned off and 
allowed to cool to room temperature overnight using 
a dry nitrogen atmosphere. Table I lists the samples 
and Tg information. 

Compressional Yield Measurements 

One-half-in.-wide tensile bars were compressed 
while confined in a +-in. slot as shown in Figure 1. 

LOAD 

1 YIELD 

.c-- 

'IDEAL' ELASTIC-PLASTI C 

* 
nlSPLACEMENT 

Figure 2 
the dashed lines are used to determine the load at  yield. 

Load-displacement curve. The intersection of 
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Table I1 Effect of Geometry 
on Compression Load 

Anvil Length Sample Length Load at  Yield 
(in.) (in.) (MPa) 

0.125 
0.125 
0.250 
0.250 
0.500 
0.500 

6.000 102 f 2 
0.125 101 f 3 
6.000 98 f 3 
0.250 96 f 3 
6.000 102 f 2 
0.500 99 f 2 

The indenter that was finally chosen was f in. wide 
and Q in. long. A typical load-displacement trace is 
shown in Figure 2. In all cases an easily recognizable 
knee was exhibited. Figure 2 also contains a graph- 
ical description of the method used to determine the 
load at yield. Using polycarbonate samples, trial ex- 
periments were made with, and without, NujoP lu- 
bricant using indenters of 4 ", 4 " and f I' length. Dif- 
ferent sample lengths were also used [very long (6") 
and equivalent to the indenter lengths]. As long as 
the lubricant was used, the data were quite consis- 
tent as shown in Table 11. 

Elastic-Plastic Assumption and Slip Line Theory of 
Hill ' 
To convert the measured load into a useful material 
characteristic we must make some assumptions 
about the nature of glassy polymers. We chose to 
characterize them as ideal elastic-plastic materials." 
Below Tg our glassy polymers exhibited localized 
yielding, slip lines, and their load-displacement 
curves resemble the two straight lines of an ideally 
elastic-plastic material (Fig. 2 ) . A correction to the 
measured loads is necessitated by the fact that the 
indentations were made on samples of finite thick- 
ness. The correction factors have been computed by 
Hill." Since we used samples of two different thick- 

Table I11 Correction for Sample Thickness 

nesses, a simple consistency check can be made. The 
results are shown in Table 111. The internal checks 
are quite good. 

The Effect of Strain Rate 

The effect of strain rate on the yield stress is a well 
known and documented p h e n ~ m e n o n . ' ~ - ~ ~  The 
compression determinations behave similarly as 
shown in Figure 3 where we compare compression 
and tensile data for polyarylate samples at 25OC and 
comparable strain rates. The rate dependence is 4 
MPa per decade. In all subsequent experiments the 
compression strain rate was either 1 or 2 X 
( l / sec) .  

Assumption of Von Mises Yield Criterion 

To compare our compression yield stresses those 
determined by other means, we have assumed a Von 
Mises yield criterion to obtain the expression (Ap- 
pendix A) : 

Y=S\/(1-v+v2). (1) 

Here Y is the tensile yield stress, S our compres- 
sional yield stress, and v Poisson's ratio. To a good 
approximation one can assume 0.42 for Poisson's 
ratio and not introduce serious error (below). 

Comparisons with Literature Data 

In Figures 4-8 are displayed tensile yield data com- 
puted from our compression experiments using eq. 
( 1). Each open circle represents the average of 8- 
10 replicate measurements. To a fair approximation, 
the semilog plots of the yield stresses versus tem- 
perature are linear. In four of the five figures, lit- 
erature tensile data are also plotted. In most cases 
the strain rates were fairly comparable (i.e., within 
a factor of 50) and the differences should not result 
in major shifts of the data. 

Yield Stress (MPa) 

Measured Corrected 

Sample t ( C )  0.125" 0.250" 0.125" 0.250" 

Arylon@ -25 143.7 f 3.0 195.0 +- 5.0 118.8 f 2.5 114.0 & 3.0 
0 122.5 f 1.5 173.8 f 2.1 101.2 * 1.2 101.6 f 1.2 

100 68.9 f 1.9 86.6 & 3.0 56.9 +- 1.6 50.6 f 2.0 
UdeP 75 79.2 f 1.9 108.6 f 4.0 65.4 f 1.6 63.5 f 2.3 
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Figure 3 
test samples were polyarylate ( Arylon@) . 

Effect of strain rate on the yield stress. The 

Except for the ZyteP 330 data, the comparisons 
between our compression data and literature tensile 
data are quite good, especially at the higher tem- 
peratures. At  the lower temperatures the tensile data 
tend to be lower. This would be quite reasonable if 
there is a pressure dependence of the yield stress. 

For ZyteP 330 the situation is different. The ten- 
sile data are actually stress at break information. 
Since the elongation at break is substantial (ca. 
loo%), we must assume that the tensile data rep- 
resent an upper bound to the tensile yield stress and 
our discrepancy may be more than it appears. If the 
comparison is valid, the pressure dependence of the 
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Figure 4 
circles were computed from compression data. 

Tensile yield stresses for Arylon@. The open 
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Figure 5 
cles were computed from compression data. 

Tensile yield stresses for Udel@. The open cir- 

critical yield stress might be unusually high (see fol- 
lowing) or the moisture contents might be different. 
We took care to keep our samples dry but we have 
no information on the moisture content of the sam- 
ples used in the tensile test. A higher moisture con- 
tent would also lead to lower yield values. 

Another test of our data can be obtained by com- 
parison with the plane stress yield strain data of 
Plummer and Donald.' This is shown in Figure 9 
where we have used Poisson's ratio information and 
Young's modulus data to convert our compression 
yield stress data to tensile yield strains. The tem- 
perature dependence of both sets of data are very 

240 -1 

* * O t  

0 
0 

0 

0 Compression 
0 Tension [Ref. 121 
A Tension (Ref. 1 q  

' 0  

-100 - 5 0  0 50 100 150 

Temperature (C) 

Figure 6 
circles were computed from compression data. 

Tensile yield stresses for Lexan@. The open 
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Figure 7 
circles were computed from compression data. 

Tensile yield stresses for Ultem@. The open 

similar, if not identical. From the findings of Plum- 
mer and Donald’ the slight shift in magnitude is 
expected from the differences in strain rates. 

The Effect of Hydrostatic Pressure 

A number of reports in the l i t e r a t ~ r e ~ ’ - ~ ~  show that 
the yield properties of polymer solids are measurably 
altered by hydrostatic pressure. The usual way that 
this pressure dependence is expressed2’ is by the 
addition of a linear correction term to the critical 
octahedral shear stress in the expression for the Von 
Mises yield criterion: 

220 260 1 
0 

0 
0 

0 

8 
8 O  
‘ 0  0 Compression 

0 Tension [Ref. 181 

4 0  t 1 I I I I .  I .  I 
- 5 0  0 50 100 

Temperature (C) 

Figure 8 Tensile yield stresses for Zytel@ 330. The open 
circles were computed from compression data. 

8 t  1 

0 Present Work 
0 Plummer et al [Ref. 91 

-1 00 0 100 

Temperature (C) 

Figure 9 Tensile yield strains for Lexan@. The open 
circles were computed from the compression yield data 
using Young’s moduli and Poisson’s ratio information. 

k, = k,, + pP.  

Here k, is the critical octahedral shear stress, p the 
pressure coefficient, and P the pressure. Using ten- 
sile and compression yield data we can obtain values 
for the pressure coefficients using the expressions 
developed in Appendix B. These data are shown in 
Table IV along with collected literature values. 
Where direct comparisons are possible the values 
computed from our experiments agree very well with 
the literature data. 

Table IV Pressure Coefficients 
of the Yield Stress 

Polymer 

Lexan@ 25 0.09 
50 0.10 
75 0.10 

-50 to 200 0.08 21 
0.05 22 
0.07 23 

Polyethylene terephthalate 25 0.08 
50 0.05 

0.09 20 
0.08 24 

Arylon@ 25 0.05 
25 0.06 

Zytel@ 330 25 0.26 
50 0.31 
75 0.35 
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Critical Crazing Stress 

Narizawa et al.’s determination of the critical crazing 
stress6 involves craze formation in a notched spec- 
imen in tension. If a notch with a circular root is 
put in a specimen and a tensile stress applied (either 
in a tensile test or a bending action), Hill’s slip line 
theory would predict slip lines as shown by the poly- 
arylate sample in Figure 10. By carefully applying 
the tensile stress, researchers were able to visually 
observe the slip lines and the formation of crazes 
above the notch.25 In all cases the plane of the crazes 
was normal to the tensile stress. Our experience was 
similar. We were never able to control the tension 
sufficiently to observe the craze formation prior to 
catastrophic failure but, in most cases, a postmortem 
examination of the fracture surface clearly revealed 
the craze and its position with respect to the notch 
could be determined from photomicrographs. Figure 
11 is such a photomicrograph. Here we are exam- 
ining a fracture surface that is normal to the applied 

tension. The feature in the top, left hand corner is 
the surface of the notch. The smooth band running 
from the bottom, left hand corner to the top, right 
hand corner (parallel to the bottom of the notch) 
is the remnant of the craze. The distance from the 
bottom of the notch to the center of the craze is 
indicated by the arrow. Hill’s slip line theory yields 
the relationship between the tensile stress normal 
to the craze plane ( a1 ) , the critical octahedral shear 
stress ( 2 k ) ,  the notch radius ( r )  and the distance 
of the craze above the notch ( x )  

a1 = 2 k [ l  + I n  (1 + x / r ) ] .  ( 3 )  

Ishikawa et al.25 and others feel that it is the hy- 
drostatic or mean stress (a,) that is critical to craze 
formation and it can be computed from the same 
information (assuming Poisson’s ratio of 0.5 ) . 

am = k [ l  + 2 In (1 + x / r ) ] .  ( 4 )  

Figure 10 
at room temperature. The notch radius was 0.5 mm. 

Slip lines. Micrographs taken on sections of notched Arylon” samples strained 
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Figure 11 Micrograph of a fractured surface. This is a low magnification, scanning 
electron micrograph of a fracture surface of Arylon@ broken at  room temperature. The 
feature in the top, left hand corner of the micrograph is the notch and the smooth band 
running from the bottom left hand corner to the top right hand corner of the micrograph 
is the signature of a craze. 

In this study B, ranged from slightly more than half 
of 6 1  to (TI. 

The procedure adopted was to machine notches 
(0.5 mm radii) into tensile bars a t  intervals of about 
0.75 in. and then anneal the samples as described 
above. The samples were heated or cooled to the 
desired temperature and the breaks made in three- 
point bend while monitoring the load and displace- 
ment. As long as the curves had a “saw tooth” ap- 
pearance, the experiments were continued. If cur- 
vature was noted, either thicker specimens were used 
to obtain a linear load-displacement curve or the 
measurements were suspended. 

The collected data are shown in Figure 12 where 
the data for the various samples have been shifted 
for clarity of presentation. The measured ratios of 
the normal tensile stresses ( ul ) to the octahedral 

shear stresses (2k) are between 1 and 2 with a very 
slight increase in the ratios as the temperature is 
increased. The similarity of the data reflect exper- 
imental limitations. For easily crazed materials (i.e., 
polymethylmethacrylate ) surface flaws in the 
notches dominated the fracture process and deter- 
minations could not be made. At  the other end of 
the spectrum, plane strain conditions could not be 
maintained with the sample sizes available and the 
experiments were suspended. 

There is not a great deal of literature data on B, 

for the polymers studied. Berger’ has computed the 
crazing to yield stress ratio for polyarylates and his 
data are shown in Figure 13. Since his experiments 
were done in plane stress, comparing with our c1 
data is proper. The magnitude and trend agree. 
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Figure 12 Normal crazing stress/shear yield stress ratios. These data were computed 
from the position of the crazes with respect to the notches in the fracture surfaces. The 
data have been shifted vertically for clarity of presentation. 

Modulus Determinations Young's Moduli 

To convert the indentation data to a more familiar 
form, we faced the task of determining Poisson's 
ratio. This is easily accomplished if bulk and shear 
or tensile modulus data are available.26 

Bulk Moduli 

The bulk moduli were determined from pressure- 
volume information taken in P V T   experiment^.^^ 
Pressure-log volume slopes were determined from 
data collected at pressures ranging from 10-100 MPa. 

The DuPont DMA was used to determine Young's 
modulus data a t  1 Hz. 

For the samples studied, in the temperature re- 
gion between Tg and any major low temperature 
secondary relaxation, the semilog plots of modulus 
versus temperature are roughly linear and nearly 
parallel. Figures 14 and 15 are representative of the 
data. Table V contains slope and intercept infor- 
mation for the straight line fits. The slopes are given 
in units of ( 1 / O C ) and the intercept information is 
presented as the moduli at 0°C. You will note the 
similarity of the slopes for the various pairs of data 
indicating a constant Poisson's ratio in that region. 

5 -  

=4 a 
0 
:3 a .  
a 
0 2  
E 

- 

- 

- 
'0 - 

0 Bulk Modulus 
0 Tensile Modulus 

-100 0 100 I I 
Temperature (C) I I I I I 

- 1  00 0 100 200 
Temperature (C) 

Figure 13 Normal crazing stress/shear yield stress ra- 
tios. Circles represent values determined for Arylon" in 
this work. The line represents data by Berger.8 Figure 14 Bulk and tensile modulus data for Arylon". 
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DISCUSSION 

Using the determined triaxial crazing stresses (a,) 
and the bulk moduli we can calculate the volume 
expansion at craze formation (crazing strains) as- 
suming a linear stress-strain relationship. Similarly 
we can use our Young's modulus and Poisson's ratio 
data to compute a shear modulus that we can use 
with our determined values of the octahedral shear 
yield stress (212) to compute the shear yield strains. 
Representative plots of the data are shown in Figures 
16 and 17. There is considerable scatter in the urn 
data. To a fair approximation, the data can be rep- 
resented by the straight lines as shown and tabulated 
information on such straight line fits are given in 
Table VI. In each case we present the slope of the 
lines and the extrapolated value of the stress or 
strain at Tg.  

Table V Poission's Ratio 

-Slope Intercept Poisson's Ratio 

Arylona B 
E 

Udel@ B 
E 

Lexan@ B 
E 

Ultem@ B 
E 

ZyteP330 B 
E 

0.0020 
0.0020 
0.0010 
0.0010 
0.0019 
0.0019 
0.0016 
0.0017 
0.0018 
0.0026 

5.3 0.43 
2.3 
5.3 0.42 
2.6 
4.6 0.42 
2.2 
6.3 0.41 
3.3 
5.8 0.40 
3.3 

3 30 
U 

0 Shear Yield Stress 
0 Shear Yield Strain 
0 Triaxial Crazing Stress 

Triaxial Crazing Strain 

-300 -200 - 1  0 0  0 

(T-Tg) (K) 

Figure 16 
lo#. 

Crazing and yield characterization of Ary- 

There is similarity among the various polymer 
glasses examined. The magnitudes and the temper- 
ature dependences of the yielding and crazing pa- 
rameters are similar but not identical. This is seen 
in Figure 18. The shear yield stresses for the five 
polymers cluster quite well but measurable differ- 
ences are noted. The crazing stresses and the shear 
yielding strains show the same behavior. The triaxial 
crazing strains in Figure 19 may be different. In this 
figure we have attempted to let the size of the points 
reflect the experimental uncertainty in the strain 
axis. The data for the various polymer samples are 
indistinguishable. Two other features are noted. 

0 Shear Yield Stress 
0 Shear Yield Strain 
0 Triaxial Crazing Stress 
H Triaxial Crazina Strain 

-300 -200 -100 0 

( T - W  (K) 

Figure 17 Crazing and yield characterization for Udel'. 
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Table VI Tabulated Data 

Stress Temp. 
-Slope (T,) Range 
("C-') (MPa) ("C) 

Triaxial crazing stress (u) 
Arylon@ 
UdeP 
Lexan@ 
Ultem@ 
Zytel@ 330 

Arylonm 
UdeP 
Lexan@ 
Ultem@ 
Zytel@ 330 

Shear yield stress (2k) 

0.0006 34 -100-150 
0.0010 25 -100-150 
0.0006 48 -100-75 
0.0001 47 -100-150 
0.0008 54 -50-100 

0.0030 33 -100-150 
0.0024 40 -100-150 
0.0025 41 -100-75 
0.0017 79 -100-150 
0.0036 42 -50-100 

Strain 
-Slope (T,) 
(%/"C) (7%) 

Triaxial crazing strain 
Arylon@ 
UdeP 
Lexan@ 
UltemO 
ZyteP 330 

Arylon@ 
UdeP 
Lexan@ 
UltemO 
Zytel@ 

Shear yield strain 

-0.0005 0.9 -100-150 
0.0009 0.6 -100-150 

-0.0008 1.4 -100-75 
-0.0009 1.0 -100-150 
-0.0004 1.2 -50-100 

0.035 1.7 -100-150 
0.027 1.8 -100-150 
0.032 3.2 -100-75 
0.017 4.3 -100-150 
0.029 1.7 -50-100 

There is very little temperature dependence of the 
triaxial crazing strains and their magnitudes are 
small, 4 . 5 % .  

2.5 t - A 

Q n : 2.0 
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1.5 

e e  
8 

0 . 
0 
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Udel' 0 0  
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A Zytel 330' 
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l " " I " " I " " I " " I " 1  

0 Arylon' 
Lexan' 

0 Udel' 

Ultern' 
Zytel' 330 

I . . . .  I . . . .  I . . . . I . . , . I . . I  

(T-Tg) tK1 

-300 -200 - 1 0 0  0 

Figure 19 Triaxial crazing strains normalized to Tg. 

APPENDIX A 

In terms of the principal stresses ( ul , u2, and u3) 
we can write the Von Mises yield criterion as: 

VZk = V(u1 - u1)2 + (a1 - u3)2 + (uz - us)'. 
(A.1) 

For a tensile test: u1 = Y ,  u2 = u3 = 0 and there- 
fore: 

f i k =  Y 

For pure shear: u = u1 = - u2, u3 = 0 and thus: 

k = u. (A.3) 

For our compression test: ul = - S ,  u2 = 0, t3 = 0 
where e l ,  t2,  and t3 are the principal strains. We can 
therefore write the generalized Hooke's Law as ( u  
= Poisson's ratio) : 

and thus: 

f i k = S V ( l - v + u ' ) .  (A.4 ) 

-300 -200 -100 0 

[T-Tgl (C) 

Figure 18 Shear yield stresses normalized to T8. 

We therefore have relationships between our 
measured, compressional yield stress (S) and the 
conventional tensile ( Y )  or shear (a) yield stress. 



APPENDIX B 

The pressure dependence of polymer yield is con- 
sidered by assuming a Von Mises yield criterion and 
then adding a linear pressure correction term to the 
octahedral shear stress ( k )  .20p21v24 

k, is the pressure independent octahedral shear 
stress and p P  the pressure correction. p is the pres- 
sure coefficient and P the hydrostatic pressure de- 
fined 

If we substitute the above expressions for k and P 
into the usual relationship for the Von Mises cri- 
terion (Appendix A ) ,  then we find 

K O =  (S /3 ) [V3(1 -  v + u 2 )  - p(1+ v ) ]  (B.3) 

where v is Poisson’s ratio. The pressure coefficient 
can be defined in terms of any two yield experiments: 

or 

etc. If we define k, = kb when p = 0, then we can 
get an idea for the magnitude of the pressure cor- 
rection. 

If we let p = 0.42 (see Table IV) then 

( k o / k b )  = 1 - 0.9426~.  (B.7) 

p was found to range from 0.03 to -0.35. Since the 
uncertainties of the measured yield stresses are usu- 
ally >5%, the pressure corrections are not warranted 
in most cases. ZyteP 330 may be an exception. 
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